Vertical Asymptotes

Remember from Precalculus 1 that
the graph of a function $y=\frac{N(x)}{D(x)}$ will usually have a vertical asymptote at $x=a$
if the denominator $D(a)=0$ and the numerator $N(a)$ is a non-zero number.
Since $\csc x=\frac{1}{\sin x}, \cot x=\frac{\cos x}{\sin x}, \sec x=\frac{1}{\cos x}$ and $\tan x=\frac{\sin x}{\cos x}$,
$\csc x$ and $\cot x$ will have the same vertical asymptotes since they have the same denominator, and $\sec x$ and $\tan x$ will have the same vertical asymptotes since they have the same denominator.

If you want to find the vertical asymptotes of $y=A \csc (B x+C)+D$ or $y=A \sec (B x+C)+D$, there is an algebraic way and a graphical way.

Algebraic way

The algebraic way relies on your knowledge of which angles sine and cosine are equal to 0 at.
$y=A \csc (B x+C)+D=\frac{A}{\sin (B x+C)}+D$ has a vertical asymptote at all $x-$ values where $\sin (B x+C)=0$.
From section 4.2 and the unit circle, the sine of an angle is a y-coordinate on the unit circle, and the y-coordinate is only 0 on the unit circle at the far left and far right of the unit circle. These correspond to the angles which are coterminal with 0 or π.
However, all these angles are separated from each other by exactly one semi-circle or π radians.
So, the sine of an angle is 0 exactly when $x=0+k \pi=k \pi$ where $k \in \boldsymbol{Z}$.
So, $\sin (B x+C)=0$ exactly when $B x+C=k \pi$ where $k \in \boldsymbol{Z}$.
So, $y=A \csc (B x+C)+D$ has vertical asymptotes where $B x+C=k \pi$ where $k \in \boldsymbol{Z}$.
(Solve that last equation for x to get the equations of the vertical asymptotes.)
Since cosecant and cotangent have the same denominator (sine),
the vertical asymptotes of a cotangent graph can be found using the same equation.
Similarly, $y=A \sec (B x+C)+D=\frac{A}{\cos (B x+C)}+D$ has a vertical asymptote at all x - values where $\cos (B x+C)=0$.
From section 4.2 and the unit circle, the cosine of an angle is an x-coordinate on the unit circle, and the x-coordinate is only 0 on the unit circle at the top and bottom of the unit circle.
These correspond to the angles which are coterminal with $\frac{\pi}{2}$ or $\frac{3 \pi}{2}$.
However, all these angles are separated from each other by exactly one semi-circle or π radians.
So, the cosine of an angle is 0 exactly when $x=\frac{\pi}{2}+k \pi$ where $k \in \boldsymbol{Z}$.
So, $\cos (B x+C)=0$ exactly when $B x+C=\frac{\pi}{2}+k \pi$ where $k \in \boldsymbol{Z}$.
So, $y=A \sec (B x+C)+D$ has vertical asymptotes where $B x+C=\frac{\pi}{2}+k \pi$ where $k \in \boldsymbol{Z}$.
(Solve that last equation for x to get the equations of the vertical asymptotes.)
Since secant and tangent have the same denominator (cosine), the vertical asymptotes of a tangent graph can be found using the same equation.

Graphical way

The graphical way relies on your knowledge of the shape of sine and cosine graphs, how the middle y-value, starting point/phase shift and quarter-period are related, and how the sine and cosecant graphs are related, and how the cosine and secant graphs are related.

Remember that $y=A \csc (B x+C)+D$ has a vertical asymptote
at all x-values where $y=A \sin (B x+C)+D$ passes through its middle y-value.
That is, at the starting point/phase shift,
and then every $2^{\text {nd }}$ quarter-period either to the left or to the right of that.
So, the equations of the vertical asymptotes would be
$x=$ PHASE SHIFT $+2\left(\frac{1}{4}\right.$ PERIOD $) k$ or $x=$ PHASE SHIFT $+\left(\frac{1}{2}\right.$ PERIOD $) k$ where $k \in \boldsymbol{Z}$.

Similarly, $y=A \sec (B x+C)+D$ has a vertical asymptote
at all x-values where $y=A \cos (B x+C)+D$ passes through its middle y-value.
That is, at the first quarter-period after the starting point/phase shift, and then every $2^{\text {nd }}$ quarter-period either to the left or to the right of that.
So, the equations of the vertical asymptotes would be
$x=$ PHASE SHIFT $+\frac{1}{4}$ PERIOD $+2\left(\frac{1}{4}\right.$ PERIOD $) k$ or $x=$ PHASE SHIFT $+\frac{1}{4}$ PERIOD $+\left(\frac{1}{2}\right.$ PERIOD $) k$ where $k \in \boldsymbol{Z}$.

